A Clifford inequality for semistable curves

نویسندگان

چکیده

Abstract Let X be a semistable curve and L line bundle whose multidegree is uniform, i.e., in the range between those of structure sheaf dualizing . We establish an upper bound for $$h^0(X,L)$$ h 0 ( X , L ) , which generalizes classic Clifford inequality smooth curves. The depends on total degree connectivity properties dual graph It sharp, sense that any there exist bundles with uniform achieve bound.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

Linear Series on Semistable Curves

We study h 0 (X, L) for line bundles L on a semistable curve X of genus g, parametrized by the compactified Picard scheme. The theorem of Riemann is shown to hold. The theorem of Clifford is shown to hold in the following cases: X has two components; X is any semistable curve and d = 0 or d = 2g − 2; X is stable, free from separating nodes, and d ≤ 4. These results are shown to be sharp. Applic...

متن کامل

Equivariant Versal Deformations of Semistable Curves

We prove that given any n-pointed prestable curve C of genus g with linearly reductive automorphism group Aut(C), there exists an Aut(C)equivariant miniversal deformation of C over an affine variety W . In other words, we prove that the algebraic stack Mg,n parametrizing n-pointed prestable curves of genus g has an étale neighborhood of [C] isomorphic to the quotient stack [W/Aut(C)].

متن کامل

Clifford Indices for Vector Bundles on Curves

For smooth projective curves of genus g ≥ 4, the Clifford index is an important invariant which provides a bound for the dimension of the space of sections of a line bundle. This is the first step in distinguishing curves of the same genus. In this paper we generalise this to introduce Clifford indices for semistable vector bundles on curves. We study these invariants, giving some basic propert...

متن کامل

Clifford Theorem for real algebraic curves

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme over R of dimension 1. A closed point P of X will be called a real point if the residue field at P is R, and a non-real point if the residue field at P is C. The set of real points, X(R), will always be assumed to be non empty. It decomposes into finitely many connected components, whose number will be denot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2022

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-022-03173-7